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SUMMARY

Membrane compartments function as segregated
signaling platforms for different cellular functions. It
is not clear how Src is regulated at different membrane
compartments. To visualize local Src activity in live
cells, a FRET-based Src biosensor was targeted in
or outside of lipid rafts at the plasma membrane, via
acylation or prenylation modifications on targeting
tags either directly fused to the biosensor or coupled
to the biosensor through an inducible heterodimeriza-
tion system. In response to growth factors and perva-
nadate, the induction of Src activity in rafts was slower
and weaker, dependent on actin and possibly its
mediated transportation of Src from perinuclear
regions to the plasma membrane. In contrast, the
induction of Src activity in nonrafts was faster and
stronger, dependent on microtubules. Hence, Src
activity is differentially regulated via cytoskeleton at
different membrane compartments.

INTRODUCTION

The nonreceptor tyrosine kinase Src plays critical roles in

numerous cellular processes (Martin, 2001). For example, Src

kinase regulates cell migration by the phosphorylation of the

adaptor protein p130CAS to recruit Crk and DOCK180/ELMO,

which can activate Rac1 to induce the formation of lamellipodia

at the leading edge of migrating cells (Cote and Vuori, 2007; Hall,

2005; Rodriguez et al., 2003). In addition, Src binds to the auto-

phosphorylated tyrosine 397 of focal adhesion kinase (FAK) via

its SH2 domain and phosphorylates tyrosine 925 of FAK. Grb2

can then bind to this site and displace FAK from paxillin, causing

focal adhesion turnover in the trailing edge of the cell (Mitra et al.,

2005). Src is also involved in the proliferation through the Ras-

MAPK pathway and in cell survival through PI3K-Akt signaling

(Thomas and Brugge, 1997). To mediate such a variety of cellular
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signaling transduction, the activation and function of Src kinase

require a highly coordinated regulation in space and time.

Indeed, Src at its resting state is localized mainly in the endo-

somes near the perinuclear region and microtubule organizing

center (Kaplan et al., 1992). Upon stimulation, active Src can

be translocated to the plasma membrane via the actin cytoskel-

eton (Sandilands et al., 2004). There is also evidence that Src

regulates downstream signals differently depending on its

subcellular localization. For example, Src induces p190RhoGAP

activation and subsequently inhibits RhoA at focal adhesion sites

(Thomas and Brugge, 1997), but activates RhoA at podosomes

(Berdeaux et al., 2004). Therefore, the visualization of the

dynamic activation pattern of Src at subcellular environments

will provide critical insight on our understanding of the molecular

mechanism regulating cellular functions.

The plasma membrane is not uniform in structure (Simons and

Toomre, 2000) and has different nano-size compartments, such

as lipid rafts, that are rich in cholesterol, sphingomyelin, and

saturated fatty acids (Brown and Rose, 1992). These compart-

mental structures are involved in the localization and regulation

of intracellular signaling molecules (Jacobson et al., 2007; Las-

serre et al., 2008). For example, Src family kinases (SFKs) are

transported to distinct compartments of plasma membrane

through different types of endosomes (Sandilands et al., 2007).

SFK members such as Lyn and Fyn can reside in lipid rafts of

the plasma membrane (Simons and Toomre, 2000), via their

N-terminal sequences after myristoylation and palmitoylation

(Zacharias et al., 2002). However, Src kinase has only a myristoy-

lation motif, and it remains controversial whether Src kinase

localizes within lipid rafts at the plasma membrane (Arcaro

et al., 2007; Hitosugi et al., 2007; Hur et al., 2004; Kasai et al.,

2005; Mukherjee et al., 2003; Shima et al., 2003). The detergent

extraction method has been widely used to study the lipid rafts

because of its detergent-resistant property. In mouse fibro-

blasts, Src was excluded from the detergent-resistant

membrane (DRM) fractions in one study, whereas another publi-

cation suggested that Src resides in DRM fraction (Mukherjee

et al., 2003; Shima et al., 2003). Different groups also reported

different Src localizations in PC12 cells (Hur et al., 2004; Kasai
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et al., 2005). This inconsistency is likely attributed to the contro-

versial effects of nonionic detergents used in these reports for

isolating DRMs, which, however, might not exactly correspond

to lipid rafts in living cells and might include membranes that

do not contain rafts before detergent extraction (Lichtenberg

et al., 2005; Shaw, 2006). Thus, the development of advanced

methods is required to study lipid rafts in live cells.

Previous studies have shown that, based on fluorescence

resonance energy transfer (FRET), genetically encoded biosen-

sors are capable of monitoring various cellular events in live cells

with high spatial and temporal resolution (Zhang et al., 2002). We

previously developed a Src FRET biosensor that can detect Src

activity in the cytoplasm (Wang et al., 2005). In this study, this Src

FRET biosensor was further coupled to membrane-targeting

motifs, either by direct fusion or by an inducible heterodimeriza-

tion system. As such, the biosensor can be directed to tether at

different compartments of plasma membrane, where the local

Src activity in live cells can be monitored and quantified in real

time. Our results revealed that Src activity is differentially regu-

lated at different compartments of the plasma membrane, medi-

ated by different sets of cytoskeletal components.

RESULTS

A Faster and Stronger Induction of Src Activity
at Nonraft Membrane Compartments
We previously developed a FRET biosensor capable of visualizing

the spatiotemporal Src activity in live cells (Wang et al., 2005). To

monitor the local Src activity in different compartments at the

plasma membrane, this Src FRET biosensor was genetically

modified to be tethered in or outside of lipid rafts (see Figure S1

available online). It has been shown that lipid modification,

including acylation and prenylation, is sufficient to target the

proteins into the different microdomains of plasma membrane

(Zacharias et al., 2002). The lipid raft-targeting biosensor

(Lyn-Src biosensor) was hence constructed by genetically fusing

acylation substrate sequences derived from Lyn kinase to the

N terminus of the cytosolic Src biosensor (Wang et al., 2005).

N-terminal glycine and cysteine in the acylation sequences can

undergo myristoylation and palmitoylation (Resh, 1994), which

partition the biosensor into lipid rafts (Simons and Toomre,

2000). The nonraft biosensor (KRas-Src biosensor) was devel-

oped by introducing prenylation sequences (KKKKKKSKTKCVIM)

from KRas to the C terminus of the cytosolic Src biosensor. Preny-

lation on the C-terminal cysteine residue and the neighboring pol-

ybasic amino acids can target the biosensor to the nonraft regions

(Zacharias et al., 2002). In fact, different mobilization properties of

Src biosensors in the microdomains of the plasma membrane

were revealed in our recent study, which used fluorescence

recovery after photobleaching analysis (Lu et al., 2008). We also

conducted an in vitro kinase assay to examine the cytosolic,

Lyn-tagged, and KRas-tagged biosensors. The results showed

that the responses of these three biosensors are very similar in

kinetics and magnitude upon Src phosphorylation (data not

shown), suggesting that these modifications of Src biosensor,

made by fusing peptides at the N/C terminus, do not affect its

function in reporting Src activity. Therefore, FRET changes of

the Lyn- and KRas-Src biosensors can be used to monitor Src

activity at different compartments of the plasma membrane.
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To investigate the spatiotemporal induction of Src activity, we

first examined the FRET response of different Src biosensors in

response to growth factor stimulations (Figure 1). The results re-

vealed that both epidermal growth factor (EGF, 50 ng/ml) in HeLa

cells and platelet-derived growth factor (PDGF, 50 ng/ml) in

mouse embryonic fibroblasts (MEFs) induced significant FRET

changes of the Src biosensors, with a faster and stronger

response from the nonraft KRas-Src biosensor when compared

with that of the Lyn-Src biosensor at rafts (Figure 1, Movies S1

and S2). In fact, the nonraft KRas-Src biosensor responded

promptly to reach the peak (50%–60% change) within 3–5 min,

whereas the response of raft Lyn-Src biosensor was much

slower and weaker (10%–20% change). These results suggest

a faster and stronger induction of Src activity in nonraft regions

at the plasma membrane upon growth factor stimulation.

Recent evidence suggests that growth factors regulate

signaling transduction via the activation of receptors and the

generation of reactive oxygen species (ROS) such as H2O2,

which oxidize cysteine residues and subsequently inhibit protein

tyrosine phosphatases (Rhee, 2006). ROS have also been shown

to enhance Src activity (Boulven et al., 2002; Huyer et al., 1997;

Takahashi et al., 2004). This combined effect of phosphatase

inhibition and Src kinase activation by ROS can highlight Src

phosphorylation efficiency on the biosensors to cause their

FRET change. Hence, the differential induction of Src activity

at different compartments of the plasma membrane was then

examined using the ROS generator pervanadate (PVD, 20 mM),

which inhibits tyrosine phosphatases and activates Src kinase

(Boulven et al., 2002). Again, the KRas-Src biosensor HeLa cells

showed a much faster and stronger FRET change in than the

Lyn-Src biosensor (Figure 2A, Movie S3). The CFP/YFP ratio of

Lyn-Src biosensor started to increase about 15 min after PVD

application, when that of the KRas-Src biosensor had already

reached its peak. These significantly distinct time courses in

FRET response of the KRas- and Lyn- Src biosensors suggest

that raft-associated and non-raft-associated proteins are

possibly separated or exchangeable, but stay at the different mi-

crodomains with different resident time (Malinska et al., 2003;

Zacharias et al., 2002). Similar differences in the responses of

the KRas- and Lyn-Src biosensors was also observed in other

cell types, including bovine aortic endothelial cell (BAEC) and

MEF (Figure S2). These PVD-induced FRET changes of Src

biosensors were inhibited in SYF�/�MEF cells (null in Src family

kinases: Src, Yes, and Fyn) or after the pretreatment of Src inhib-

itor PP1 (20 mM) in HeLa cells (Figure S3), confirming that the

PVD-induced FRET responses mainly represent the enhanced

Src activities. These results suggest that a faster and stronger

enhancement of Src activity occurred in nonraft regions at the

plasma membrane.

Quantification of the Kinetics and Magnitude
of the FRET Responses of Src Biosensors
To further study the different kinetics of the Src phosphorylation

efficiency upon PVD in membrane compartments, we quantified

the parameters representing the Src activation kinetics based on

the velocity curves of FRET change in time. The velocity of FRET

change, vi, was calculated by taking the discrete time derivatives

of the normalized CFP/YFP emission ratios. The resulting bell-
, 48–57, January 30, 2009 ª2009 Elsevier Ltd All rights reserved 49
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shaped velocity curves were fitted by the Gaussian functions

given by the following equation:

vðtÞ= A,
1ffiffiffiffiffiffi
2p
p

s
,exp

 
� ðt � mÞ2

2s2

!

The parameters A, s, and m were estimated by parameter fitting

to represent the total FRET change, reaction duration, and the

time point where the reaction reaches the maximal velocity,

respectively. The onset time of the reaction, T0, was calculated

based on the values of s and m (T0 = m � 1.64485 3 s, see

Supplemental Data). The mean and standard deviation of the

parameters were calculated using data from multiple cells and

compared between groups.

The KRas-Src biosensor, in comparison to the Lyn-Src

biosensor, showed significantly higher value in A (KRas-Src:

0.5734 ± 0.0122; Lyn-Src: 0.3381 ± 0.0088), representing

a stronger response, and lower values in s (KRas-Src: 2.058 ±

0.1169; Lyn-Src: 2.441 ± 0.1459) and T0 (KRas-Src: 6.936 ±

0.6320; Lyn-Src: 14.042 ± 0.1942), indicating faster and earlier

responses (Figure 2C and Table S1). These statistical results

confirmed the FRET observations obtained from single-cell

imaging. The different dynamics of compartment-targeted Src

biosensors was further verified by immunoprecipitation/immuno-

blotting. As shown in Figure S4, the phosphorylation of the KRas-

Src biosensor caused by the enhanced Src activity was detected

earlier than that of the Lyn-Src biosensor upon PVD stimulation.

Inducible Heterodimerization System
The membrane-anchoring motif for the Lyn-Src biosensor is

at the N terminus, whereas it is at the C terminus for the KRas-

Src biosensor (Figure S1). To exclude the possibility that different

responses of biosensors were caused by different tagging motifs

Figure 1. Differential Responses of the Src Biosensor Tethered at Different Compartments of the Plasma Membrane upon Growth Factor

Stimulations

The CFP/YFP emission ratio images of KRas- (upper panels) or Lyn-Src biosensors (lower panels) in response to 50 ng/ml EGF in HeLa cells (A) or PDGF in MEF

cells (B). The scale bars on the left of the images represent the levels of CFP/YFP emission ratio. Time courses on the right panels represent the normalized CFP/

YFP emission ratio of KRas- (purple) and Lyn-Src biosensors (green) before and after stimulations.
50 Chemistry & Biology 16, 48–57, January 30, 2009 ª2009 Elsevier Ltd All rights reserved
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Figure 2. Differential Responses of the KRas- and Lyn-Src Biosensors upon Pervanadate Stimulation
(A) The CFP/YFP emission ratio images of HeLa cells with KRas- or Lyn-Src biosensors in response to pervanadate (PVD) (left panels). Time courses on the right

panel represent the normalized CFP/YFP emission ratio of KRas- (purple) and Lyn-Src biosensors (green) before and after stimulations.

(B) The representative velocity curves of FRET signals of KRas- (purple) and Lyn-Src biosensors (green) upon PVD application. Solid lines represent curves

of Gaussian function determined by curve-fitting.

(C) The normalized values (mean ± SEM) of T0, s, and A for KRas- (black bar) and Lyn-Src biosensors (white bar) determined by parameter fitting (n = 11 and 8,

respectively). Asterisks indicate significant differences (p < 0.05) between groups.
and/or 3D orientations of the biosensors in relation to the plasma

membrane, we applied an inducible heterodimerization system

for the membrane localization (Inoue et al., 2005) (Figure 3A).

The cytosolic Src biosensor was fused to the FRB domain,

and the Lyn- or KRas-targeting motif was fused to FKBP

(FRB binding peptides) (Figure S1). When a heterodimerizer

AP21967 (1 mM) was introduced into HeLa cells expressing

FRB-Src biosensor and the Lyn- or KRas-FKBP peptide, the

cytosolic FRB-Src biosensor was successfully recruited to

the Lyn- or KRas-FKBP peptides located at the plasma

membrane (Figure 3B and Movie S4, data not shown). Again,

the subsequent addition of PVD induced a faster and stronger

FRET response of the FRB-Src biosensor dimerized with

KRas-FKBP than that with Lyn-FKBP (Figure 3C). Statistical

results further revealed that the KRas-FKBP/FRB-Src biosensor

has higher A and lower s values, in comparison to the Lyn-FKBP/

FRB-Src biosensor (Table S1). These results verified that the

different kinetics of KRas- and Lyn-Src biosensors originate

from their differential compartmental localization, but not from

different tagging motifs or 3D orientations.

Two Distinct Populations of Src Kinases Are Regulated
by Different Cytoskeletal Components
The plasma membrane is directly connected with and mechan-

ically supported by cytoskeletal structures such as polymerized

actin and microtubule filaments (Etienne-Manneville, 2004 ; Ro-

driguez et al., 2003; Warner et al., 2006). The cytoskeleton has

also been known to play important roles in the intracellular move-

ment of molecules, in particular Src translocation (Sandilands

et al., 2004, 2007). Thus, we examined the role of the cytoskeletal

network in regulating the localization and activation of Src kinase

at different membrane compartments.

Because Src kinase can be transported to the plasma

membrane via the actin network upon growth factor stimulation

(Fincham et al., 1996), we monitored the mobilization of Src

kinase (Figure 4A, upper panels; Movie S6) and actin dynamics

upon PVD application (Figure 4A, lower panels) using EGFP-

conjugated c-Src kinase (Sandilands et al., 2004) and

mCherry-conjugated b-actin (Shaner et al., 2004). At the resting

state, a large population of Src kinases can be clearly observed

near the perinuclear region within endosome-like structures, as
Chemistry & Biology 16, 48–57, January 30, 2009 ª2009 Elsevier Ltd All rights reserved 51
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Figure 3. The Responses of Src Biosensors Tethered at the Plasma Membrane through a Heterodimerization System

(A) A cartoon scheme depicting compartmentalization of the biosensors to the plasma membrane by an inducible heterodimerization system.

(B) The CFP images of FRB-Src biosensor before and after AP21697-induced dimerization with Lyn-FKBP.

(C) The CFP/YFP emission ratio images of FRB-Src biosensor dimerized with KRas-FKBP or Lyn-FKBP before and after PVD application for various periods (left

panels). Time courses of CFP/YFP emission ratio of FRB-Src biosensors fused to KRas-FKBP (purple) or Lyn-FKBP (green) upon PVD application in HeLa cells

(right panel).
previously reported (Sandilands et al., 2004). At 10 min after PVD

application, the Src concentration started to decrease in

perinuclear regions, with a concomitant increase at cell

periphery and plasma membrane ruffles. A colocalization of

Src kinase and actin can also be observed at the cell periphery

regions after PVD stimulation (Figure 4A). These results suggest

that Src kinase is transported to the plasma membrane by actin

filaments upon PVD stimulation. Indeed, after pretreatment with

cytochalasin D (CytoD) for 1 hr to block actin polymerization, the

redistribution of EGFP-wt Src upon PVD was not observed

(Figure S5, left panels). The membrane translocation of Src

kinase was also blocked by cotransfection of Scar1 WA (a domi-

nant negative mutant of Scar1), which inhibits actin nucleation

(Figure S5, middle panels). Interestingly, the inhibition of micro-

tubule by nocodazole (Noco) did not significantly affect the

redistribution of c-Src kinase into cell peripheral regions
52 Chemistry & Biology 16, 48–57, January 30, 2009 ª2009 Elsevier
(Figure S5, right panels). These results suggest that Src kinases

can translocate to the plasma membrane by utilizing the actin

cytoskeleton upon PVD stimulation, similar to previous observa-

tions in cells subjected to growth factor stimulation (Fincham

et al., 1996).

We then investigated the relationship between different cyto-

skeletal networks and the responses of Src biosensors (Figures

4B–4E). The PVD-induced FRET response of the Lyn-Src bio-

sensor was significantly inhibited by 1 hr of pretreatment with

CytoD (1 mM), but not with 1 mM Noco (Figures 4B and 4D,

Figure S6A, and Table S1). CytoD increased the duration of the

reaction (s increased from 2.441 ± 0.1459 to 4.474 ± 0.4830)

and decreased total FRET change (A decreased from 0.3381 ±

0.0088 to 0.2049 ± 0.0366) of the Lyn-Src biosensor, suggesting

a slower and weaker response (Figure 4B and Table S1). These

results suggest that the PVD-induced Src activation at lipid rafts
Ltd All rights reserved
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is dependent on actin, likely through the Src translocation to the

plasma membrane mediated by actin, but not microtubules.

In contrast to the Lyn-Src biosensor, the PVD-induced rapid

response of the KRas-Src biosensor was independent of

the membrane-translocation of perinuclear Src kinases. The

disruption of actin filaments, which blocked the membrane trans-

location of Src kinase (Figure S5), did not show significant inhib-

itory effects on the response of the KRas-Src biosensor (Figures

4C and 4E and Table S1). In fact, the KRas-Src biosensor started

to respond at around 5 min (Figure 2A), well before a significant

Figure 4. Actin Filaments and Microtubules Differentially Regulate the PVD-Induced Src Biosensor Responses at Different Compartments

of the Plasma Membrane

(A) Images of EGFP-conjugated c-Src kinase (upper panels) and mCherry-conjugated b-actin (lower panels) before and after PVD stimulation for various periods.

Arrows point to the membrane ruffles where Src kinase and actin fibers are colocalized.

(B and C) Bar graphs represent the normalized values (mean ± SEM) of parameters T0, s, and A in different groups of (B) Lyn- and (C) KRas-Src biosensors (n = 8–

13). Black, gray, and white bars represent results of biosensors in control cells, and cells treated with cytochalasin D (CytoD) or nocodazole (Noco). Asterisks

indicate significant difference with 95% confidence determined by Bonferroni test.

(D and E) The CFP/YFP emission ratio images of HeLa cells expressing Lyn- (D) or KRas-Src (E) biosensors. The cells were exposed to 20 mM PVD after pretreat-

ment with CytoD (upper panels) or Noco (lower panels) as indicated.
Chemistry & Biology 16, 48–57, January 30, 2009 ª2009 Elsevier Ltd All rights reserved 53
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translocation of Src kinases can be observed (Figure 4A). Inter-

estingly, the nonraft Src activity was dependent on microtubules,

because the pretreatment with Noco caused a significantly de-

layed (T0 increased from 6.936 ± 0.6320 to 14.263 ± 0.9240)

and slower (s increased from 2.058 ± 0.1169 to 5.023 ± 0.7430)

response of the KRas-Src biosensor upon PVD treatment

(Figure 4C and Table S1). Taxol, a reagent stabilizing microtu-

bules and hence perturbing the dynamics of microtubules,

showed similar effects as Noco on the nonraft KRas-Src

biosensor (data not shown). The total change of CFP/YFP ratio

A for the KRas-Src biosensor was not significantly affected by

Noco treatment (Figure 4C and Table S1), suggesting that micro-

tubule might affect the onset time and speed, but not the total

magnitude of the nonraft Src activation.

We further examined the roles of microtubules and actin cyto-

skeleton in regulating the responses of the cytosolic Src

biosensor. We found that the disruption of actin cytoskeleton

or microtubules did not inhibit the FRET response of cytosolic

Src biosensor upon PVD stimulation (data not shown). These

results suggest that the inhibitory effect of cytoskeletal disrup-

tion is specific for the membrane-targeted biosensors and that

the phosphorylation of Src biosensor in the cytoplasm does

not require an intact cytoskeleton upon PVD stimulation. Thus,

the cytoskeleton might be important for the regulation of Src

functions at the plasma membrane, but not necessary for the

cytosolic processes.

DISCUSSION

Proper subcellular localization of signaling molecules and inter-

action with correct target molecules are important characteris-

tics of coordinated regulation of the complex signaling network

and physiological functions. For example, Src induces the

p190GAP activation and inhibits Rho GTPase at the focal adhe-

sion sites (Thomas and Brugge, 1997), whereas it activates Rho

GTPase at podosomes (Berdeaux et al., 2004). Lipid rafts have

been suggested to serve as the integration site for a variety of

signaling pathways. The localization of small GTPase TC10 at

lipid rafts is required for the insulin-induced activation and the

subsequent regulation of glucose transporter 4 (Watson et al.,

2001). Akt in or outside of lipid rafts responded differently to

PDGF but not to IGF-1 (Gao and Zhang, 2008). Src kinase also

appears to be recruited into lipid rafts by Cbp and inhibited by

Csk (Oneyama et al., 2008). Because of the controversial effects

of detergent-based extraction of rafts-associated proteins,

contradictory results have been reported on the roles of rafts

or membrane compartments in determining the Src functions

(Arcaro et al., 2007; Hitosugi et al., 2007; Hur et al., 2004; Kasai

et al., 2005; Mukherjee et al., 2003; Shima et al., 2003).

In this study, we developed a novel noninvasive method that

combines FRET biosensor and statistical analysis to study Src

activity in live cells at different compartments of the plasma

membrane. Our results indicate that Src activity at the plasma

membrane outside of lipid rafts is enhanced in a faster and

stronger fashion upon the application of growth factors and

PVD. Together with the previous observations that, at resting

state, Src kinase is concentrated at the plasma membrane

outside of DRM regions (Hitosugi et al., 2007; Kasai et al.,

2005; Mukherjee et al., 2003) and at cytoplasm in perinuclear
54 Chemistry & Biology 16, 48–57, January 30, 2009 ª2009 Elsevier
endosomes (Sandilands et al., 2007; Sandilands et al., 2004),

our results support the model of two distinct populations of

Src (Figure 5). One population of Src kinase exists in nonraft

regions on the plasma membrane at the resting state and can

be rapidly activated upon stimulation (Hitosugi et al., 2007; Kasai

et al., 2005; Mukherjee et al., 2003). The other population of Src

is located in perinuclear endosomes at the resting state, and can

be transported to lipid rafts upon stimulation in an actin-depen-

dent manner. These differentially regulated Src might direct

different cellular functions. Indeed, v-Src at different subcellular

locations has recently been reported to regulate differential

signaling pathways. For example, v-Src was found at both raft

and nonraft regions upon thermoactivation to regulate PI3K/

Akt and MAPK/ERK pathways, respectively (de Diesbach

et al., 2008). Interestingly, the raft-anchored Akt biosensor has

been shown recently to have a faster and stronger response

upon PDGF stimulation than that in nonraft regions (Gao and

Zhang, 2008). This result suggests that the raft-localization facil-

itates Akt activation. Together with our observations that Src

kinase functions more strongly in nonraft regions at the plasma

membrane, it is clear that cells can coordinate the molecular

functions and network by controlling the subcellular localization

of molecules.

Our results further suggest that these distinct responses of

membrane-targeted Src biosensors are mediated by different

cytoskeletal networks. The disruption of microtubules had signif-

icant effects on the early nonraft Src activation without affecting

the translocation and activation of Src at rafts (Figures 4C and

4E; Figure S5), whereas the blockade of actin polymerization

by CytoD significantly inhibited the membrane translocation of

Figure 5. A Proposed Model of Two Distinct Populations of Src

Kinases at Plasma Membrane

One population of Src kinases is prestored outside of lipid rafts on plasma

membrane at rest state and can be rapidly activated upon stimulation. Another

population of Src kinases is located in endosome-like structures around

nucleus at rest state, which can translocate to lipid rafts through actin

filaments upon stimulation and become activated.
Ltd All rights reserved
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Src and its activity at lipid rafts (Figures 4B and 4D; Figure S5).

Our results suggest that Src activation at rafts is dependent on

the transportation of Src kinases from perinuclear regions to

the plasma membrane by actin cytoskeleton, although there is

a possibility that actin depolymerization also affects other

cellular processes in regulating Src activation. This model is sup-

ported by the previous observation that Src can be transported

from perinuclear endosome-like regions to cell membrane

via actin cytoskeleton and becomes highly activated (Sandilands

et al., 2004). In fact, there is ample evidence that lipid rafts

are closely connected to actin cytoskeleton. For example,

actin-binding proteins such as ezrin and filamin A can serve as

bridges between actin cytoskeleton and raft-associated protein

such as PAG1 and CD28 (Viola and Gupta, 2007). The raft-asso-

ciated phosphoinositide lipid PI(4,5)P2 was also shown to regu-

late actin dynamics by recruiting actin-regulatory molecules

such as WASP and ERM (Caroni, 2001). Indeed, actin depoly-

merization by latrunculin B blocks the proper localization and

simulation-induced clustering of raft-anchored fluorescent

probes or H-Ras molecules (Chichili and Rodgers, 2007; Mura-

koshi et al., 2004). The treatment of CytoD to disrupt actin

filaments also prevented proper interactions between raft-asso-

ciated Lyn and IgE-Fc3RI (Holowka et al., 2000).

Interestingly, a negative mutant of Scar1 (WA) blocked the re-

sponses of both KRas- and Lyn-Src biosensor upon PVD (data

not shown). We reasoned that there might be a slow chronic re-

cycling process to maintain the prestored Src population at the

plasma membrane outside of lipid rafts (Maxfield and McGraw,

2004), which is dependent on actin-mediated membrane-trans-

portation. The long-term (48 hr) inhibition of actin nucleation by

Scar1 WA might block the membrane transportation and prevent

an accumulation of Src at the plasma membrane in and outside

of lipid rafts, resulting in the inhibition of both the Lyn- and KRas-

Src biosensors. It is possible that Src kinases are initially trans-

ported to lipid rafts and then translocate into nonraft regions to

form the prestored Src population. Short-term (1 hr) treatment

with CytoD might only block the acute membrane-translocation

of Src toward lipid rafts, and did not affect the prestored Src

outside of lipid rafts. Hence, CytoD significantly inhibited the

response of Lyn-Src, but not that of the KRas-Src biosensor

(Figures 4B–4E).

SIGNIFICANCE

In contrast to the traditional in vitro assays performed in test

tubes and cuvettes, the integration of FRET and specific

membrane-targeting biosensors allows the quantification

of the parameters of enzymatic reactions such as T0, A,

and s in compartments of plasma membrane, whose sizes

are smaller than the resolution of conventional optical fluo-

rescence microscope (the size of single lipid raft is believed

to be around 50 nm) (Pralle et al., 2000). The velocity of FRET

response in the membrane compartment of each individual

cell fits well with the bell-shaped Gaussian function. This

result indicates that enzymatic reactions in these different

compartments are relatively complex and different from

the instant-onset enzymatic reaction described by the Mi-

chaelis-Menten model in vitro. These FRET analysis assays

can hence advance our systematic and in-depth under-
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standing of enzymatic reactions at subcellular compart-

ments in live cells. The curve fitting and statistical analysis

method also provides a general platform to integrate a large

quantity of data from single-cell FRET images for the quan-

tification of the molecular kinetics of different signaling

cascades. In combination with this statistical analysis

approach, our FRET biosensors and live-cell imaging tech-

niques can provide a robust and nonintrusive alternative to

biochemical assays.

EXPERIMENTAL PROCEDURES

Cell Culture and Reagents

HeLa and MEF cells were purchased from ATCC. The Src/Fyn/Yes triple-

knockout MEF (SYF�/�) was a generous gift from Dr. Jonathan Cooper (Fred

Hutchinson Cancer Research Center). BAECs were isolated from bovine aorta

with collagenase. Cell culture reagents were obtained from Invitrogen. Cells

were maintained in Dulbecco’s modified Eagle’s medium supplemented with

10% fetal bovine serum (FBS), 2 mM L-glutamine, 1 U/ml penicillin, 100 mg/

ml streptomycin, and 1 mM sodium pyruvate. Cells were cultured in a humidi-

fied 95% air, 5% CO2 incubator at 37�C.

Actin filaments or microtubules were disrupted by incubation for 1 hr with

cytochalasin D (Sigma; 1 mM) or nocodazole (Sigma; 1 mM), respectively

(Wang et al., 2005). EGF and PDGF were purchased from Sigma.

DNA Constructions and Plasmids

The Lyn-Src biosensor was previously developed and described (Wang et al.,

2005). The KRas-Src biosensor was constructed by fusing 14 KRas-prenyla-

tion sequences (KKKKKKSKTKCVIM) to the C terminus of Src biosensor using

polymerase chain reaction (PCR). For the FRB-Src biosensor, PCR was

applied to create HindIII and BamHI sites flanking FRB. The PCR product

was fused to the N terminus of Src biosensor in pcDNA3 (Invitrogen). Lyn-

FKBP or KRas-FKBP was constructed by PCR of FKBP with the Lyn-acylation

sequence (Wang et al., 2005) incorporated into the sense primer or the KRas-

prenylation sequence into the antisense primer, respectively. The PCR prod-

ucts of Lyn- or KRas-FKBP were inserted into pcDNA3 using EcoRI/HindIII

restriction enzyme sites.

mCherry-b-actin was a kind gift from Dr. Roger Y. Tsien (University of Cali-

fornia, San Diego). The expression of mCherry-actin, Scar1WA, and EGFP-wt

Src was previously described (Sandilands et al., 2004; Shaner et al., 2004).

Preparation of Pervanadate

Pervanadate solution was prepared as previously described (Huyer et al.,

1997). In brief, 10 ml of 100 mM Na3VO4 and 50 ml 0.3% H2O2 in 20 mM HEPES

(pH 7.3) were mixed in 940 ml H2O. After 5 min, catalase (CalBiochem, 260 U/ml)

was added to release excess H2O2, which resulted in 1 mM pervanadate.

Inducible Heterodimerization System

The ARGENT� regulated heterodimerization kit was obtained from ARIAD

Pharmaceuticals. The dimerization domain FKBP was conjugated to Lyn-acyl-

ation (Wang et al., 2005) or KRas-prenylation sequences for membrane target-

ing. The other dimerization domain FRB was conjugated to the cytosolic Src

biosensor.Thecells were cotransfected with theFRB-conjugatedSrcbiosensor

and a membrane-targeted FKBP domain (either KRas-FKBP or Lyn-FKBP).

Upon the addition of rapamycin analog AP29167 (1 mM), the FRB-conjugated

Src biosensor can be induced to associate with the membrane-bound FKBP

and be targeted to different compartments at plasma membrane.

Image Acquisition

During imaging, the cells were cultured in cover-glass-bottom dishes and

maintained in 0.5% FBS CO2-independent medium (GIBCO BRL) at 37�C.

Images were collected by a Zeiss Axiovert inverted microscope and a cooled

charge-coupled device camera (Photometrics, Tucson, AZ) using MetaFluor

6.2 software (Universal Imaging) with a 420DF20 excitation filter, a 450DRLP

dichroic mirror, and two emission filters controlled by a filter changer

(475DF40 for CFP and 535DF25 for YFP). The mCherry-b-actin images were
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collected using a 560DF40 excitation filter, a 595DRLP dichroic mirror, and

a 653DF95 emission filter. A neutral-density filter was used to control the inten-

sity of the excitation light. The fluorescence intensity of nontransfected cells

were quantified as the background signals and subtracted from the CFP and

YFP signals on transfected cells. The pixel-by-pixel ratio images of CFP/YFP

were calculated based on the background-subtracted fluorescence intensity

images of CFP and YFP by the MetaFluor program to allow the quantification

and statistical analysis of FRET responses by Excel (Microsoft) and Matlab

(The MathWorks). The emission ratio images were shown in the intensity modi-

fied display mode (Wang et al., 2005).

SUPPLEMENTAL DATA

The Supplemental Data include Supplemental Experimental Procedures,

Supplemental References, six figures, one table, and five movies and can

be found with this article online at http://www.cell.com/chemistry-biology/

supplemental/S1074-5521(08)00455-9.
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